v1.11.0 (682)

Cours scientifique - SOD322 : Recherche opérationnelle et données massives

Domaine > Mathématiques et leurs applications.

Descriptif

But: modéliser et traiter des problèmes d'optimisation discrète de grandes dimensions.

Programme: limites des méthodes classiques; traitement des grands graphes; décomposition des problèmes et accélération des méthodes usuelles; la RO pour le machine learning (clustering, méthodes de PLNE pour l'apprentissage); parallélisme...

nombre d'heure en présentiel

22

nombre de blocs

6

Volume horaire par type d'activité pédagogique : types d'activité

  • Contrôle Final : 4
  • Bloc de 1/2 journée 3h : 11
  • Cours magistral : 1
  • Petite classe : 4
  • Travaux dirigés en salle info : 2

Diplôme(s) concerné(s)

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole nationale supérieure de techniques avancées

MAP-RO
OROC-RO-PM

Format des notes

Numérique sur 20

Littérale/grade américain

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole nationale supérieure de techniques avancées

Vos modalités d'acquisition :

 Travaux pratiques et examen écrit

Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
  • le rattrapage est obligatoire si :
    Note initiale < 6
  • le rattrapage peut être demandé par l'étudiant si :
    6 ≤ note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 1.5 ECTS
  • Scientifique acquis : 1.5

Le coefficient de l'UE est : 1.5

La note obtenue rentre dans le calcul de votre GPA.

L'UE est évaluée par les étudiants.

Programme détaillé

1. Bloc de module:
Séance 1 Analyse de la structure de grands réseaux

Comprendre la structure des réseaux est crucial dans de nombreux contextes, allant de la conception de protocoles à l'optimisation et à la prévision de l'évolution de ceux-ci. Dans ce contexte, la théorie des graphes fournit un ensemble de concepts importants permettant de caractériser la structure des réseaux en pratique. Ce premier cours a pour but de rappeler les bases de la théorie des graphes et ses liens avec l'analyse en réseau, ainsi que de montrer les solutions habituellement utilisées lorsque les algorithmes classiques ne passent pas à l'échelle.
2. CM:
Séance 2 Analyse et modélisation des réseaux dynamiques

Les éléments vus dans le cours précédent fournissent une première compréhension de la structure des réseaux mais reposent sur une vision statique de ceux-ci. Or dans de nombreux cas, la structure du réseau évolue au cours du temps. Ce second cours poursuit la réflexion entamée dans le cours précédent en montrant comment adapter les définitions classiques de la théorie des graphes au cas dynamique. Par ailleurs, ce cours abordera la question de la modélisation des graphes, en particulier de leur évolution, à travers un cas pratique.
3. TD en salle info:
TP portant sur le cours
4. Bloc de module:
Séance 3
- Branch and cut algorithms for Steiner Trees
- Benders decomposition for Facility Location
- Generalized Benders decomposition
5. Bloc de module:
Séance 4
- Introduction au phénomène de concentration de la mesure
- Lemme de Johnson-Lindenstrauss: projections aléatoires et réduction de dimension. Application aux problèmes de clustering
- Projections aléatoires et résolution de programmes linéaires de grandes tailles
6. PC:
Exercices d'application et d'approfondissement
7. PC:
Modeling session (exercises ):
- Models for connected facility location, ring-star problems, etc.
- With and without Benders decomposition
8. Contrôle: Examen écrit

Mots clés

Optimisation discrète, graphes, grande dimension, résolution de problèmes
Veuillez patienter